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Table 1: Data statistics for the training and validation
sets. “Avg. Length” and “Vocab Size” (measured in
words) are shown as (Question / Context).

Split Language Samples Avg. Length (Qst/ Ctx) Vocab Size (Qst/ Ctx)

Train  Arabic 2,558 6.33/103.40 5,399/27,194
Korean 2,422 5.73/96.56 6,114 /25,052
Telugu 1,355 5.66/87.58 2,411/16,238
Val Arabic 415 6.31/103.22 1,180/9,087
Korean 356 5.64/95.36 1,073 /7,598
Telugu 384 5.99/106.27 741/7,901

1 Week 36 - Rule Based Classifier

We analyze the tydi-xor-rc (Asai et al., 2021;
Clark et al., 2020; Muller et al., 2023) dataset for
Arabic (Ar), Korean (Ko), and Telugu (Te). Ta-
ble 1 summarizes training and validation statistics
computed with a language-specific word-level tok-
enizer (details in Appendix A.1). Shown below are
the five most common words, together with their
translations and frequencies:

* Arabic: 9 (in, 593), ;o (from, 586), o
(when, 535), Lo (what, 442), ga (he, 349).

« Korean: £ (what, 607), 7}& (most, 529),
A (when, 433), O{C| (where, 316), F7
(who, 311).

o Telugu: DS (who, 274), D (which is, 192),
Q) (how many, 165), d))¢éd (when, 154), )
(A, 142).

where translations were generated using Google
Translate!. These common words include in-
terrogatives (e.g., who, what, when) and common
function words (e.g., in, from, he), which is typical
for question data.

1.1 Rule-Based Classifier

We built a Rule-Based Classifier (RBC) that oper-
ates on a English-translated question (via NLLB
model) and the context, and labels them as answer-
able if (1) its word overlap with the context ex-
ceeding 30% (after stopword and punctuation re-

"https://pypi.org/project/deep-translator/

moval) or (2) a named-entity or noun overlap is
detected. Details in Appendix A.3. We evaluated
performance using Accuracy and F1 (Section 1.1),
as F1 accounts for class imbalance (Ko. 94.7 %,
Te. 75.8 %, Ar. 87.5 % answerable). The RBC
achieves strong F1 scores but is generally outper-
formed by a naive “always answerable” baseline
(see Section 1.1). For Telugu, however, it performs
better, suggesting that incorporating semantic cues
helps identify unanswerable cases in the most im-
balanced language subset.

Rule-Based Naive Baseline
Language
Acc. F1 Acc. F1
Arabic 0.7880 0.8791 0.8747 0.9332
Korean 0.8006 0.8878 0.9466 0.9726
Telugu 0.7917 0.8726 0.7578 0.8622

Table 2: Validation Accuracy (1) and F1-Score (1) of
the Rule-Based Classifier and Naive Baseline.

2  Week 37 - Language Models

We implemented three language models of increas-
ing complexity for English contexts and Arabic,
Korean, and Telugu questions: (1) a Unigram
model as a frequency baseline, (2) a Bigram model
capturing local dependencies, and (3) an LSTM
model for long-range context modeling. Our n-
gram models use Laplace smoothing to handle un-
seen n-grams. We applied the tokenizer from mul-
tilingual BERT as it segments words into mean-
ingful subwords, reducing out-of-vocabulary prob-
lems while keeping a shared multilingual vocabu-
lary. To limit sparsity, only tokens occurring in
the training data were retained. Details in Ap-
pendix B.1.

2.1 Evaluation and Discussion

Models were evaluated using Perplexity (PPL),
which measures how well a model predicts the next
token given its context (preceding tokens). Results
are shown in Table 3. The LSTM outperforms
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Table 3: Perplexity Scores ({) for Language Models on
the validation set.

Table 4: Performance of the classifiers on the validation
set using Accuracy (1) and F1-Score (7).

Model English Arabic Korean Telugu
Unigram 1630.19 409.06 303.26 205.72
Bigram  2597.64 61292 118.81 86.42
LSTM 16533 141.86  30.19 33.99

n-gram models across all languages by learning
representations that captures sequential dependen-
cies. The improvement is most pronounced for En-
glish contexts (165.33 vs. 1630.19), where LSTMs
leverage longer sequences (avg. 103 words) more
effectively. The lower perplexity (30-142) of the
questions might be due to their brevity (avg. 6
words) and predictable structure, benefiting both
n-gram and neural models. Counterintuitively, Bi-
grams perform worse than unigrams for English
and Arabic due to data sparsity and the limita-
tions of Laplace smoothing. The much larger
space of possible bigrams leads to many unseen
pairs, resulting in excessive smoothing and thus de-
graded estimates for observed pairs. The smaller
vocabularies in Korean and Telugu mitigate this
effect, allowing Bigrams to outperform unigrams
as expected. Alternative smoothing methods (e.g.,
Kneser-Ney) could address this issue. See Ap-
pendix B.2 for results with alternative smoothing,
reduced vocabulary and tokenization methods.

3 Week 38 - ML Classifiers

We implemented three hierarchically more com-
plex classifiers to predict whether a question is an-
swerable given its context, for questions in Ara-
bic, Korean and Telugu. First, a Logistic Regres-
sion baseline as a non-neural baseline that uses
TF-IDF features to measure the relative frequency
and importance of word and n-gram overlap of
the question and context. Next, a Bidirectional
LSTM (BiLSTM) is used, as it combines a bidi-
rectional architecture for contextual understanding
with LSTM cells for long-range dependency mod-
eling. Finally, we fine-tuned a Multilingual BERT
(mBERT)? model, leveraging its advanced trans-
former architecture and context understanding ac-
quired from multilingual pre-training. All models
used weighted Cross-Entropy Loss to address class
imbalance to penalize misclassifications of the mi-
nority class. Details in Appendix C.1.

’bert-base-mult ilingual-cased

Model Arabic Korean Telugu
Acc. F1 Acc. F1 Acc. F1
LogReg 0.9518 0.9731 0.9466 0.9726 0.7630 0.8594

BiLSTM 0.9807 0.9889 0.9494 0.9738 0.8281 0.8862
mBERT 09807 0.9889 0.9775 0.9881 0.9115 0.9439

3.1 Evaluation and Discussion

Similar to Week 36, we report Accuracy and F1-
Scores. Results are shown in Table 4. We ob-
serve a clear trend: Neural models (BiLSTM,
mBERT) outperform the LogReg baseline, show-
ing that semantic and sequential features are supe-
rior to lexical overlap for answerability. Further-
more, mBERT outperforms BiLSTM, showing the
strength of deep contextualized representations. In-
terestingly performing identically on Arabic. All
models perform as well as or better than a naive
“always answerable” baseline. Arabic achieved the
best overall F1-Score, while Telugu was the worst.
Crucially, however, Telugu showed the largest rel-
ative improvement over the naive baseline (=9.5%)
compared to Arabic (=6%) and Korean (=1.6%).
This substantial gain likely stems from a higher
proportion of diverse unanswerable samples in the
Telugu validation set, which better showcases the
model’s learned ability to distinguish subtle differ-
ences between answerable and unanswerable ques-
tions.

4 Week 39 - Open QA

We implemented three Open QA settings for Tel-
ugu using the google/mt5-small’® model and to-
kenizer from Hugging Face to analyze the impact
of context, and answer language: (1) with context
(Q+C— A7), (2) without context (Q— Ar.), and
(3) cross-lingual with English answers (Q— Agy,).
Setting 1 and 2 used a smaller subset of Tel-
ugu data, which was limited and mostly contained
unanswerable samples, while Setting 3 used the
full dataset with English answers, with mostly an-
swerable questions. Each setting used a detailed
prompt that explained the setting to leverage the
model’s pre-trained multilingual contextual under-
standing. Detailed prompts and implementation in
Appendix D.1.

4.1 Results and Discussion

We evaluate models using ROUGE-1 for unigram
(token-level) overlap and ChrF++ for character-

3https://huggingface.co/google/mt5-small
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Table 5: Open QA Generation Performance on ROUGE-
1 (1) and ChrF++ (1) on the validation set for Answer-
able (Ans.), Unanswerable (Unans.) and Overall data.

Table 6: Span-based Metrics (Exact Match (EM) (1),
Flgpan (1), and Flieq (1)) on the Validation Set

Language Model EM Flgan  Flioken
Metric Setting 1 Setting 2 Setting 3 BiLSTM 0.1614 0.2030 0.5058
Condition Q+C = Ar) (Q— Ar) (Q— Agn) Arabic mBERT 0.4916 0.4900 0.6994
ROUGE-1 (Ans.) 0.000 0.143 0.137 mDeBERTa 0.5325 0.5027 0.7234
ROUGE-1 (Unans.) 0.075 0.183 0.828 BIiLSTM 0.1489 0.2077 0.4945
ROUGE:-1 (Overall) 0.070 0.180 0.304 Korean mBERT 0.4916 0.5165 0.7034
ChrF++ (Ans.) 4.70 28.16 14.10 mDeBERTa 0.5225 0.5455 0.7485
ChrF++ (Unans.) 41.60 85.84 87.64 BiLSTM 0.1901 0.1623 0.4721
ChrF: O 11 40.78 84.67 31.05 ’ ’ ’
T+ Overalh Telugu mBERT 04193 04267 0.6302
mDeBERTa 0.4219 0.4731 0.6636

level matching, which is well suited to morphologi-
cally rich languages like Telugu. Table 5 shows the
results. All settings achieve better metric scores
for unanswerable than for answerable questions.
This gap likely reflects the nature of the questions
(see Appendix D.2). Unanswerable questions of-
ten test general facts that are likely frequent in
the model’s pre-training, while answerable ones
tend to require domain-specific information (likely
less represented in pre-training) or may have mul-
tiple valid but context-dependent answers. Addi-
tionally, answerable training examples appear sim-
pler, which may limit the model’s ability to gener-
alize to more complex questions. However, for Set-
ting 1, where context is provided, this alone does
not explain the poor performance. We attribute it to
the predominance of unanswerable samples, which
likely confuses the model and causes it to treat the
context as noise, leading to hallucinated answers.

The models are also able to answer correctly
without context by relying on knowledge from pre-
training: Setting 1 achieved 29% exact match on
contextually unanswerable items, while Settings 2
and 3 reached 79% and 26%, respectively (Exam-
ple outputs in Appendix D.3). Setting 3 obtained
the highest ROUGE-1, possibly benefiting from
more training data*, while Setting 2 achieved the
highest ChrF++. This might reflect ROUGE-1’s
focus on token overlap and ChrF++’s sensitivity
to character-level variation, which benefits Telugu.
More notably, despite Settings 1 and 2 sharing the
same task and data (but Setting 2 lacking context),
they show a huge performance difference, further
suggesting that the context in Setting 1 acts as a
noise rather than as a useful signal. We also ob-
served duplicated questions across splits (some-
times with different answers), which may affect
evaluation quality.

*We realized, that comparison is limited due to different
training and validation data, however we did not have the time
to retrain the model using the same data.

5 Week 40 - Span Based QA

In this week, we implemented three hierarchically
more complex models for span-based QA in Ara-
bic, Korean, and Telugu by using the BIO (Begin—
Inside—Outside) tagging scheme to represent an-
swer spans. We masked non-context tokens (la-
bel = —100) to exclude them from loss computa-
tion. Unanswerable questions are represented by
sequences of 'O’ tags. To establish a clear per-
formance hierarchy for analysis, we trained three
multilingual sequence models: a BiLSTM with a
MultiheadAttention layer as a compact base-
line, mBERT as a pretrained Transformer bench-
mark, and mDeBERTa (microsoft/mdeberta-
v3-base) as a higher-capacity variant. All models
were trained on combined multilingual data to ex-
ploit cross-lingual patterns and increase sample di-
versity. A weighted Cross-Entropy Loss was used
to tackle the extreme class imbalance (predomi-
nantly “O” tokens). Details in Appendix E.1.

5.1 Results and Discussion

We evaluated our models using Exact Match (EM),
that requires a perfect match of the entire predicted
BIO sequence with the true sequence. Flp,, mea-
sures span-level performance, computing the F1-
Score based on the overlap between predicted and
gold answer spans. We also report Floken (macro
F1 over B, I, and O classes) to capture overall la-
beling quality, as accuracy would be uninformative
due to the dominance of O’ tokens. Results are
provided in Table 6.

The results show that transformer models out-
perform the simpler BiLSTM across all metrics,
with mDeBERTa performing best. EM was lowest
for transformers in Telugu, likely because of lim-
ited data and many unanswerable samples made
learning exact spans difficult, while for BiLSTM,
EM for Telugu was the highest which might re-



Lang. RBC mBERT (Avg.)
Acc. ) O Acc. Fq
English  1.0000 1.0000 0.8 0.8816
Danish ~ 0.7000 0.8235 0.8667 0.9279
German 0.5000 0.6667 0.8 0.8845

Table 7: Test set Accuracy (1) and F1-Score (1) of RBC
and averaged mBERT.

flect a bias toward predicting unanswerable sam-
ples. Flgpan was highest for Korean and lowest
for Telugu, indicating that span extraction becomes
harder with less data. The gap between Fl e, and
Flgpan shows that even with strong token labeling,
exact span prediction remains challenging.

6 Week 41+ - Evaluation on Test set

For the final task, we created a test set (30 ques-
tions; 10 each in English, Danish, and German)
to test the generalization capabilities of our cre-
ated models on new data and languages, it was not
trained on. However, due to the small sample size,
evaluation provides rather an indicative measure of
performance. The test set consists of mostly an-
swerable questions (9/10 for English and Danish;
8/10 for German). Questions include general fac-
tual questions, but also more complex questions
that cannot easily be answered without context by
using knowledge from pre-training.

6.1 Answerability Classifier (Week 36 & 38)

We evaluated our Rule-Based Classifier (RBC,
Section 1) and the fine-tuned multilingual
BERT (mBERT, Section 2), which was our best-
performing answerability model. For mBERT, we
report results averaged across its language-specific
variants (Arabic, Korean, Telugu). For the RBC,
each question was first translated to English.
As shown in Section 6.1, the RBC achieves
perfect scores on English but performs poorly on
Danish and German, reflecting the limitations
of rule-based heuristics. The mBERT model,
performs more consistently across languages and
clearly surpasses the RBC on Danish and German,
showing the advantage of learned representations.

6.2 Open QA (Week 39)

We chose the mt5 model from Setting 3, which
predicts the English answer given our test set
questions, as it was trained on the largest dataset
and thus expected to generalize best. Table 8
shows ROUGE-1 and ChrF++ scores near zero
for all languages, indicating failed cross-lingual

Language Rouge-1 ChrF++
English 0.000 3.426
Danish 0.025 3.1759
German 0.0 2.4509

Table 8: Open QA Generation Performance using
Rouge-1 and ChrF++ on the test set

Language EM Flg,, Fligen
English 0.3 0.2105 0.8161
Danish 0.2 04444 0.7262
German 0.2 0.2222 0.7686

Table 9: Span-based Metrics (Exact Match (EM),
Flgpan, and Flgen) on the Test Set

transfer. Examination of generated outputs reveals
the model produced completely unrelated answers
across all languages (e.g., “Alaska” for “tallest
mountain in Iran”, “Dynasty” for “Queen Mar-
grethe’s full name”), suggesting it generated arbi-
trary facts from its pre-training rather than attempt-
ing to answer the question.

6.3 Span-Based QA (Week 40)

For this week, we chose our mDeBERTa model
as it was the overall best performing model for
Week 40. Table 9 presents the results, which
shows a strong contrast. Although Flo., scores
are high, indicating that the model can identify rel-
evant tokens across all classes, the low EM and
Flgpan scores show that precisely locating answer
span boundaries remains a major challenge, de-
spite the learned multilingual representations dur-
ing pre-training.

6.4 General Observation

All models showed reduced performance on un-
seen zero-shot languages, indicating that while
multilingual pre-training enables cross-lingual
transfer, fine-tuning on typologically diverse tar-
get data remains crucial for optimal downstream
results. The models’ ability to retain moderate per-
formance nonetheless reflects the strength of their
learned multilingual representations.

7 Conclusion

Transformer models (mDeBERTa, mBERT) con-
sistently outperformed simpler baselines, with per-
formance correlating to model and training data
size. Results on new question languages (English,
Danish, and German) revealed notable degrada-
tion, confirming that pre-training alone is insuf-
ficient without language and task specific fine-
tuning.



Contribution of each group member

Generally, for Week 37-40, we decided to split up
each of the k£ models to each of the k£ group mem-
bers, with each member doing their own design
choices for the models. For Week41, as mkp570
trained the models that were used to evaluate the
test set, this part was done by him. For Week39,
the task was very complex and each group mem-
ber tried to achieve good results for their assigned
setting. Every member created models that per-
formed on the task, over a span of multiple weeks
as the task was pretty difficult, thus every group
member put lots of effort in achieving qualitative
results for their assigned task. In the end the
best model results for each task were achieved by
mkp570, thus using this models for the final re-
port. Before reporting the scores for the final re-
port, mkp570 polished and finalized all models
used and was rerunning them. The final report,
was based on our previously weekly assignment,
where each member actively performed. mkp570,
then polished and aligned Week36 - Week38 and
Week40 and Week41 to the new data. As Week
39 had no inital results, they were also created dur-
ing this process. Altogether, each group member
actively participated in meetings, discussions and
put in effort into each week and the final report.
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A Appendix - Week 36

A.1 Our Word-level Tokenizer

We implemented a custom WordTokenizer class
to handle the distinct linguistic properties of the
languages in our dataset. For Arabic, it utilizes
pyarabic.araby.tokenize > to correctly seg-
ment morphologically rich words, and for Korean,
it employs konlpy.tag.0kt ° to identify mean-
ingful phrases. Telugu tokenization is handled
by indicnlp.tokenize.trivial_tokenize ’,
while the English contexts are tokenized using
NLTK’s standard word_tokenize function. This
approach provides more accurate word-level seg-
mentation than simple whitespace splitting, which
is crucial for these morphologically complex lan-
guages

A.2 Translation Google Translate vs. NLLB

Table 10: Analysis of most common words in questions.

Language Word Count Google Translation NLLB Translation
] 593 in In the
oo 586 from I am from
Arabic o 535 when When?
b 442 what We are not.
9 349 he He is the
2o 607 what What?
7+ 529 most The most
Korean HH| 433 when When?
o] 316  where Where are you going?
=7 311 who Who?
AR 274  who Who is who?
8 192 which is Whatever it is
Telugu AY 165 how many How many?
AR 154 when When?
D 142 A No, not at all.

A.3 Rule-Based Classifier

Our Rule-Based Classifier operated on the trans-
lated questions in English, generated from the
facebook/nl1b-200-distilled-600M® model.
Our rule based classifier first took the translated
question and context and removed punctuation,
provided by the string.punctuation function.
We then employed two rules: (1) removing stop-
words provided by nltk and lowercasing the
question and context, to then calculate the in-
tersection of the unique vocabulary in the ques-
tion and context and (2) using spacy (via the

Shttps://pypi.org/project/Py Arabic/

®https://konlpy.org/en/latest/

"https://github.com/anoopkunchukuttan/indic_nlp_library

8https://huggingface.co/facebook/nllb-200-distilled-
600M
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en_core_web_sm model) to extract all named en-
tities (e.g., PERSON, GPE, DATE) and nouns (NOUN,
PROPN) from both the question and context and
check if there is an overlap. A question is consid-
ered answerable, if either the overlap from (1) is
above a 0.3 threshold or if there was an overlap in

Q).
B Appendix - Week 37

B.1 Model Implementation

N-Gram Models We implemented a Unigram
(n=1) and Bigram (n=2) language model that uses
the subword tokenizer from the multilingual Bert
model (bert-base-multilingual-cased). We
restricted the vocabulary to only tokens present in
each language’s training set to reduce data sparsity.
We added Laplace smoothing to handle unseen n-
grams in the validation set. The probability of an
n-gram is calculated as:

C(wffn+1) + 1
C(U’:":}mﬂ) +V

P(w; | wg:é-ﬂ)

where C'is a count function, V' the vocabulary size
and wg;ll 11 denotes the sequence of n — 1 con-
text tokens (w;_pn+1,...,w;—1) immediately pre-

ceding the token w;.

LSTM The LSTM also uses the bert-base-
multilingual-cased tokenizer, with an embed-
ding dimension of 300, 2 layers with an hidden size
of 512, combining a total of 100,960,031 param-
eters. Our texts in the dataset are truncated after
128 tokens, which generally does not have any ef-
fect for Telugu, Arabic, and Korean, but for En-
glish. However, as English has in general more
training data and for computational reasons, we
have not increased nor implemented a sliding win-
dow approach. We trained the LSTM for 15 epochs
on each language separately using language depen-
dent learning rates (English: 0.001, Telugu: 0.1,
Arabic/Korean: 0.01), the Adam optimizer and a
batch size of 16.

B.2 Other Results

Table 11: Perplexity Scores ({) for N-Gram models on
the validation set using the top 1000 most common vo-
cabularies.

Model Type  English Arabic Korean Telugu
Unigram 57.97 224.40 214.77 205.72
Bigram 32.45 210.63 69.12 86.42

Fixed Vocabulary for n-gram Models Table 11
shows the results, limiting the vocabulary to the top
1000 most common tokens + the unknown token.
We can observe that for Telugu nothing changed,
as it was using a lower vocabulary anyway. For
each language we can now observe the effect of the
Bigram performing better than the Unigram model.
However, limiting the vocabulary for a better per-
plexity score is not making the language model
more capable.

Using Kneser-Ney Smoothing Bigram results
of using Kneser-Ney smoothing for Arabic, Ko-
rean, and Telugu. English is omitted due to compu-
tational reasons. Note that Kneser-Ney cannot be
computed for Unigram models as it is based on the
continuation probability which calculates a word’s
likelihood based on the diversity of unique words
that precede it, which is not given in a Unigram
setting.

Table 12: Perplexity Scores ({) for Bigram models on
the validation set using Kneser-Ney smoothing.

Model Type English  Arabic

185.16

Korean

33.48

Telugu
31.25

Bigram -

Table 12 present the results. We can observe
how close we get to the LSTM performance, even
achieving better performance for Telugu, showing
the power of this smoothing method.

Using Character level tokenization Our LSTM
used the same architecture and hyperparameters as
our subword level LSTM. Table 13 showing the

Table 13: Perplexity Scores ({) for Language Models
on the validation set using character level tokenization.

Model Type English Arabic Korean Telugu

Unigram 24.55 21.49 100.68 30.90
Bigram 12.70 13.60 34.97 12.27
LSTM 3.82 5.33 10.13 9.25

results. As the Vocabulary massively decreases
(For n-grams: Telugu: 95, Arabic: 113, Korean:
828, English: 1254) we see massive reduction in
perplexity and also the common pattern that Uni-
gram performs worse than Bigram and worse than
atrained LSTM. However, as we no longer use sub-
words, it is an entirely different task than before
and perplexity scores cannot directly be compared.



C Appendix - Week 38

C.1 Implementation details

LogReg The Logistic Regression model was im-
plemented using scikit-learn’s LogisticRegression
classifier with a TF-IDF vectorization pipeline.
The input consisted of concatenated question and
context text pairs, which were then transformed
into TF-IDF feature vectors. For the TF-IDF fea-
tures, we filtered out terms that appear in more
than 90% of documents and removed further en-
glish stop words.

A grid search with 3-fold cross-validation was per-
formed to optimize the following hyperparameters:

¢ ngram_range:

(2.3)}

{(LD, (1,2), (1,3), (2,2),

e max_features: {5,000, 10,000, 50,000,

100,000, 200,000}
* C: {0.1, 1.0, 10.0, 100.0, 1,000.0, 10,000.0}

The Fl-score was used as the evaluation metric
for selecting the best hyperparameter combination.
Separate models were trained for each language
(Korean, Telugu, and Arabic). Final Parameters
per language were:

» Korean: ngram_range=(1,3),
max_features=100,000, C=1.0

* Telugu: ngram_range=(1,2),
max_features=50,000, C=0.1

* Arabic: ngram_range=(1,3),
max_features=100,000, C=10.0

Additionally we used balanced class weights in
the Cross Entropy loss to address class imbalance.

BiLSTM The BiLSTM model was implemented
using PyTorch with a custom architecture designed
for sequence classification. The model processes
tokenized text through an embedding layer with
256 dimensions, followed by three bidirectional
LSTM layers of dimension 256, and concludes
with a dropout (0.3 rate) and a fully connected
classification head.

ext sequences were tokenized using the BERT mul-
tilingual tokenizer (bert-base-multilingual-cased)
with the following configuration: max_length =
512, padding = True, truncation = True. Questions
and contexts were passed to the tokenizer, creating
a separator token between them.

Truncation was used to match BERT’s maximum
sequence length. For Korean and Telugu trun-
cation rates were below 0.6%, while for Arabic

below 2.5%.
We wused a weighted Cross-Entropy loss
using weights computed by the com-

pute_class_weight function by scikit-learn
using the balanced strategy. We further used
an Adam optimizer and trained for 15 epochs.
We performed a grid search for our learning rate
over {0.01, 0.001, 0.0001, 0..00001}. The best
learning rate was selected based on validation F1-
score, and separate models were trained for each
language using language-specific class weights.

mBERT The mBERT model was fine-tuned us-
ing the Hugging Face Transformers library, lever-
aging the pre-trained bert-base-multilingual-cased
model with a sequence classification head. We
used the same tokenization as our BiLSTM. We
used again a Weighted Cross Entropy Loss, imple-
mented in a custom WeightedLossTrainer. We
used AdamW optimizer, using a learning rate of
de — b, a batch size of 32 and trained for 3 epochs.
We trained the model separately for each language.

D Appendix - Week 39

D.1 Implementation and Training Details

For all three Settings, we used the google/mt5-
small model from Hugging Face and its corre-
sponding tokenizer with a max length of 512 sam-
ples for setting 1 input and 128 for setting 1 out-
put and setting 2 and 3 input and output with trun-
cation and dynamic padding via DataCollector-
ForSeq2Seq. No truncation were observed.

For Setting 1 and 2, we filtered the dataset to
only samples that have an question in Telugu and
an answer in Telugu (answer_inlang field not
null) resulting in 50 training (5 answerable and 45
unanswerable) and 100 validation (7 answerable,
93 unanswerable) samples. For Setting 3, we fil-
tered the dataset to only samples that have an ques-
tion in Telugu and an answer (answer field not
null), resulting in 1335 training (1310 answerable,
45 unanswerable) and 384 validation (291 answer-
able, 93 unanswerable) samples.

Setting 1 We gave our model the following
prompt: “Given a question in Telugu:
question_text, with a context in en-
glish: context_text.
answer in Telugu:”

Generate an



Further, we used a Cross-Entropy Loss with
a AdamW optimizer and a weight decay of
0.01 on a learning rate of 5e-4 and enabled
predict_with_generate. We used a batch size of 8
and for 80 epochs.

Setting 2 We gave our model the following
prompt: “Given a question in Telugu:
question_text; Generate an answer in
Telugu:”

Further, we used a Cross-Entropy Loss with
a AdamW optimizer and a weight decay of
0.01 on a learning rate of 5e-4 and enabled
predict_with_generate. We used a batch size of 8

and for 80 epochs.

Setting 3 We gave our model the following
prompt: “Given a question in Telugu:
question_text; Generate an answer in
English:”

Further, we used a Cross-Entropy Loss with
a AdamW optimizer and a weight decay of
0.01 on a learning rate of 5e-4 and enabled
predict_with_generate. We used a batch size of 8
and for 50 epochs due to a larger dataset.

D.2 Questions Answerable vs Unanswerable

Answerable Questions (translated):

* Question: When did World War I begin?
— Answer: 1914 (also 28 July 1914 with

same question in Dataset)

— Question were answer without context
has multiple options

* Question: According to the 2011 census,
how many houses are in Gottiproli village?

— Answer: 511
— Domain-specific information about Tel-
ugu cinema

¢ Question: When did Pakistan become inde-

pendent?

— Answer: 1947

— From training set, showing a lower com-
plexity than the validation set.

Unanswerable Questions (translated):

* Question: When did the East India Company
come to India?

— Answer: 1608

— Historical Fact

* Question: According to Telugu Panchang,
which English month is the start of the New
Year?

— Answer: March or April

— Cultural knowledge about Indian calen-
dar systems, probably encountered in
multilingual pre-training data

* Question: What is the population density of
New York City?

— Answer: 28,491
— Factual geographic information com-
monly found in reference materials

D.3 Example Outputs

Answerable

* Question:  DFgghcd D  OITRY
QQoeeeéd? (Which heaven did Vishwamitra
build?)

- Ground Truth: &%0% (Trishanku)

— Answer (Setting 1): 35°%¥o (Srikaku-
lam)

— Answer (Setting 2): &%0% (Trishanku)

— Answer (Setting 3): Trishanku

* Question: moﬁB&, mmoﬁoe’aaé 23°:6°3c5 <))
8780 & o)oo_bcfo @ocﬁoém&cﬁ) ? (When
did Singireddy Narayana Reddy receive the
Jnanpith Award?)

— Ground Truth: 1988

— Answer (Setting 1): Seomres S
¢35 23> €306 (Andol, Medak district,
Telangana)

— Answer (Setting 2): 1988
— Answer (Setting 3): 1988

Unanswerable

* Question: S5B80055° 5°gH 8 K005 EAES
a":o&s)é NE? (Which scientist dlscovered
the cure for malaria?)

— Ground Truth: 3oy esocéoryf (Hans
Andersen)

— Answer (Setting 1): QSQ (France)

— Answer (Setting 2): 23 SUe ST
3586 (JPMorgan Chase Tower)

— Answer (Setting 3): Sir William Her-
schel



* Question: &3Q RG0S Ko 2PBBRFoS°®
8 QY SYo&? (When did the East India
Company come to India?)

— Ground Truth: 1608

— Answer (Setting 1): 1608
— Answer (Setting 2): 1608
— Answer (Setting 3): 1608

E Appendix - Week 40

E.1 Implementation and Training

BiLSTM This model consisted of a trainable em-
bedding layer (300-dimensional), a 2-layer bidirec-
tional LSTM with hidden size 256, a 4-head mul-
tihead self-attention mechanism, and a linear clas-
sifier for token-level predictions. The model had
approximately 50 million trainable parameters. It
further used the mBERT tokenizer for tokenization
with a maximum sequence of 512 tokens.

mBERT The bert-base-multilingual-
cased model (loaded from Hugging Face) was
fine-tuned with a token classification head. This
model contains approximately 178 million param-
eters and has been pretrained on 104 languages
using masked language modeling. We used the
model corresponding tokenizer with a maximum
sequence of 512 tokens.

mDeBERTa The microsoft/mdeberta-
v3-base model (loaded from Hugging Face)
was fine-tuned with a token classification head.
This model contains approximately 278 million
parameters and employs disentangled attention
mechanisms with enhanced mask decoders, rep-
resenting the highest-capacity architecture in our
hierarchy. We used the model corresponding
tokenizer with a maximum sequence of 512
tokens.

All models were trained for 15 epochs with early
stopping (with patience 5). We used a batch size
of 8 for training and 16 for evaluation. Further
our transformers first performed 500 warmup steps.
We also used a Weight decay of 0.01. For com-
putational reasons, we used FP16 training. Our
BiLSTM further used a training rate of 10~ and
class weights for the weighted cross entropy loss
of [0.5,8.0,4.0] for O/B/I tags. mBERT used a
learning rate of 3 - 1075 and class weights of
[0.5,8.0,4.0], while mDeBERTa used a learning
rate of 2 - 1075 and class weights of [0.7, 3.0, 1.8].
All models were trained on the combined dataset

from Arabic, Korean and Telugu. The training set
comprised 6,335 examples (5,972 answerable and
363 unanswerable, corresponding to 94.3% and
5.7% respectively), while the validation set con-
tained 1,155 examples (991 answerable and 164
unanswerable, corresponding to 85.8% and 14.2%
respectively). For each token in the context, BIO
tags were assigned based on character-level overlap
with the gold answer span. The procedure main-
tained an is_in_answer flag to ensure that the
first overlapping token received a “B” label and
subsequent overlapping tokens received “I”” labels.
Tokens outside the answer span were labeled as
“0O”. For unanswerable questions, all context to-
kens were labeled “O”.

F Hardware and Software

We used an Intel Ultra 7 CPU and a RTX
5080 GPU. Further, Python 3.13.7 with Torch
2.8.0+cul29 was used. We used SEED = 42.
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UCPH’s Al declaration

Declaration of using generative Al tools

I/we have used generative Al as an aid/tool (please tick)
1 I/'we have NOT used generative Al as an aid/tool (please tick)

If generative Al is permitted in the exam, but you haven’t used it in your exam paper, you
just need to tick the box stating that you have not used GAIL. You don’t have to fill in the
rest.

List which GAI tools you have used and include the link to the platform (if possible):

- GitHub Copilot [https://github.com/features/copilot]
- Claude [https://claude.ai/]
- ChatGPT [https://chatgpt.com/]

Describe how generative Al has been used in the exam paper:

1) Purpose (what did you use the tool for?)

2) Work phase (when in the process did you use GAI?)

3) What did you do with the output? (including any editing of or continued work on the
output)

We used GitHub Copilot and Claude for helping with coding. Claude was used for debugging
and testing to help resolve errors in our code, while GitHub copilot was used during active
coding by generating suggestions. The suggested code and fixes were reviewed and corrected
and modified if needed. The debugging information by Claude were used to understand the
errors and to fix them.

ChatGPT was used during writing for the report to provide suggestions for grammar and
coherence. It was also used for suggestions on how to shorten paragraphs. The output was
always thoroughly reviewed and not directly copied to ensure the final content reflects the
original thought and analysis.

Please note: Content generated by GAI that is used as a source in the paper requires correct
use of quotation marks and source referencing. Read the guidelines from Copenhagen
University Library at KUnet here.
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